Remarks on complemented subspaces of von Neumann algebras
نویسندگان
چکیده
منابع مشابه
Remarks on Complemented Subspaces of Von-neumann Algebras*
In this note we include two remarks about bounded (not necessarily contractive) linear projections on a von Neumann-algebra. We show that if M is a von Neumann-subalgebra of B(H) which is complemented in B(H) and isomorphic to M ⊗ M then M is injective (or equivalently M is contractively complemented). We do not know how to get rid of the second assumption on M. In the second part,we show that ...
متن کاملNonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملVarious topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملvon Neumann Algebras
For every selfadjoint operator T in the Hilbert space H, f(T) makes sense not only in the obvious case where / is a polynomial but also if / is just measurable, and if fn(x)-+f(x) for all x£R (with (/,) bounded) then fn(T)-+f(T) weakly, i.e. <fn(T)£9i)+<f(T)£9ti)V£9fiCH. Moreover the set {f(T)9 f measurable} is the set of all operators S in H invariant under all unitary transformations of H whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
سال: 1992
ISSN: 0308-2105,1473-7124
DOI: 10.1017/s0308210500014116